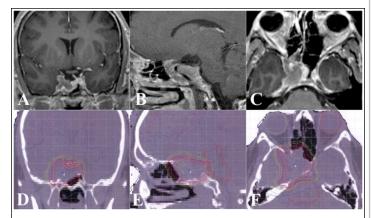
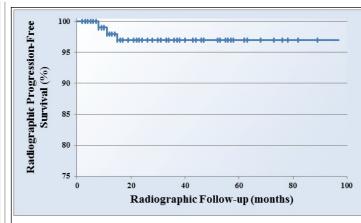


Fractionated Stereotactic Radiotherapy for Pituitary Adenomas: Single-Center Experience with the BrainLAB Novalis System


Sean M. Barber, MD; Bin S Teh MD; David S. Baskin MD Houston Methodist Neurological Institute, Houston, Texas

Introduction


Fractionated stereotactic radiotherapy (FSRT) is a linear-accelerator-based radiotherapy technique that combines the precision of stereotactic radiosurgery (SRS) with the "tissue-sparing" advantage of dose fractionation.(1) Early results of post-operative FSRT for functional and nonfunctional pituitary adenomas appear promising, (2-3) but the majority of available evidence draws from small series with insufficient follow-up to draw meaningful conclusions.

Methods

The study objective was to evaluate the long-term outcomes of a large series of patients undergoing FSRT for both functional and non-functional pituitary adenomas with the Novalis system (BrainLAB, Heimstetten, Germany) at our institution. One hundred consecutive patients underwent FSRT for a pituitary tumor at our institution between January, 2004 and June, 2013. Chart data for these 100 patients were retrospectively reviewed. Mean clinical follow-up was 66.6 months (range, 7.2 – 121.8 months).

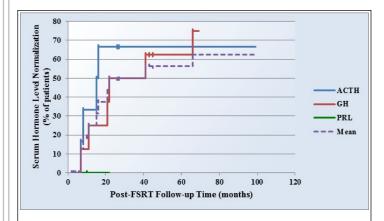
(A – C) Post-operative, pre-radiotherapy MRI and (D – F) corresponding stereotactic radiotherapy planning target volume (PTV) definitions of a patient with a non-functioning pituitary adenoma who underwent FSRT after transsphenoidal tumor resection due to the presence of residual disease.

Kaplan-Meier survival curve illustrating the radiographic progression-free survival in 92 patients with pituitary adenomas (N = 90) or carcinomas (N = 2) after treatment with FSRT at our institution.

Results

Mild, grade I acute adverse effects were observed during radiotherapy treatment in 47 patients (47%), and objective, persistent worsening of vision occurred in 3.5% after FSRT. Radiographic progression-free survival was 97% over a mean 31.4 months of radiographic follow-up (range, 1.9 – 96.8 months). Net growth occurred in only 2 patients, both of whom harbored pituitary carcinomas. Hormonal normalization was seen in 62.5% of patients with functional adenomas after FSRT, while 25% experienced partial hormonal control and 12.5% remained uncontrolled. New hormonal deficits were seen in 27% of patients after FSRT.

Radiographic and functional responses were inversely related to both tumor volume (Radiographic: R = -0.66, P < 0.0001; Functional: OR = OR = 0.849, P = 0.025) and time delay between surgical intervention and FSRT (Radiographic: R = -0.277, P = 0.003; Functional:OR = 0.99, P = 0.005). Radiographic (P = 0.006) and functional (P = 0.027) responses were also significantly better in radiation-naïve tumors.


Conclusions

FSRT delivers radiographic and functional outcomes similar to those seen with SRS and conventional radiotherapy with less resultant toxicity. FSRT outcomes are most favorable in small pituitary adenomas (those < 3 cm in diameter) and when initiated promptly after surgical resection is complete.

References

1. Shrieve DC, Kooy HM, Tarbell NJ, Loeffler JS. Fractionated stereotactic radiotherapy. Important advances in oncology. 1996:205-224.

 Kim JO, Ma R, Akagami R, et al. Long-term outcomes of fractionated stereotactic radiation therapy for pituitary adenomas at the BC Cancer Agency. International journal of radiation oncology, biology, physics. Nov 1 2013;87(3):528-533.
Kopp C, Theodorou M, Poullos N, et al. Tumor shrinkage assessed by volumetric MRI in long-term follow-up after fractionated stereotactic radiotherapy of nonfunctioning pituitary adenoma. International journal of radiation oncology, biology, physics. Mar 1 2012;82(3):1262-1267.

Line-graph illustrating of the percentage of 16 patients with endocrine-active tumors who experienced normalization of serum hormone levels in the follow-up period after undergoing FSRT.